Overall Aims and Objectives

The BISYPLAN project aims to produce a handbook which can be used as a reference and resource by those seeking to develop bioenergy projects in their regions. It will focus on biomass for energy and addresses the main proven conversion technologies and resources.

The project addresses misunderstandings and lack of buyer competence still present in some states and regions where the change in energy production systems has not commenced. This will be achieved by combining and bringing together the experience and the competence of academia with the widespread local/regional expertise and experience of regional energy agencies.

The overall aim is to produce a handbook for those responsible for planning and decision making about regional and/or local energy infrastructure. The handbook will be made available on-line and will be available in English, Italian, Estonian and Greek. It is expected that the existence of such a handbook will increase the quality of biomass system commissioning and procurement so that more planned projects get carried out.

The handbook will include fundamental aspects as well as application examples from the different regions represented by the project partners.

The project team have started content development and this should be completed by early 2012 with a plan to release the final handbook in mid 2012.

Seeking your Input and Content

The TEA is working on the section on financing bioenergy projects. We would welcome any case studies or information which you might have so that it can be included in the handbook.

If you have any information which would be of relevance please contact Seamus Hoyne (shoyne@tea.ie) or Michael Bell (mbell@Tea.ie).
The handbook aims to be a guidance for anyone who needs not understand all the fundamental aspects of biomass-based energy systems but who needs a conceptual and over-all understanding. Target groups are those who are involved in planning, who take strategic decisions and who are involved in the procurement process, but who feels inferior to the consultants and suppliers during the process.

The handbook aims to explain the underlying logics and properties that make biomass-based energy systems different from fossil-fuel based energy systems.

The handbook aims to remove some of the most common misunderstandings still prevalent among many people who have no extensive experience of biomass-for-energy and hence to promote the installation of new biomass-based energy installations worldwide.

How to use this handbook

As you will notice in the table below, the chapter numbering is split in two parts according to a matrix structure.

The columns, 1-5, indicate fundamental properties, resources, supply-chain aspects, process aspects and cost structures respectively while the rows, 0-4, indicates general aspects and the biomass quality, ligno-cellulose, herbaceous, putrescible and others.

Hence, the handbook can be used mainly in two ways:
1: If you read along a column, you concentrate on one of the general aspect and you will study how that aspect takes various forms for different biomasses. This is relevant if you - for example - strive to establish a local or regional biomass-producer co-operative and you need to know, for example, how the supply chains differ. Then you should study chapters 03-.. This is one way to use the handbook.
2: Reading along a row, you will study different aspects of one specific group of biomasses. This is the most relevant way to use the handbook if you - for example - are situated in a region where agricultural residues are abundant and you are trying to plan for the utilisation of these partly herbaceous and partly putrescible materials. This is another way to use the handbook.

Tabular structure of the handbook -

<table>
<thead>
<tr>
<th>Columns:</th>
<th>1 Fund.properties</th>
<th>2 Resources</th>
<th>3 Supply chains</th>
<th>4 Processes</th>
<th>5 Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rows:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Introduction</td>
<td>01-00</td>
<td>02-00</td>
<td>03-00</td>
<td>04-00</td>
<td>05-00</td>
</tr>
<tr>
<td>1 Ligno-cellulose</td>
<td>01-01</td>
<td>02-01</td>
<td>03-01</td>
<td>04-01</td>
<td>05-01</td>
</tr>
<tr>
<td>2 Herbaceous</td>
<td>01-02</td>
<td>02-02</td>
<td>03-02</td>
<td>04-02</td>
<td>05-02</td>
</tr>
<tr>
<td>3 Putrescible</td>
<td>01-03</td>
<td>02-03</td>
<td>03-03</td>
<td>04-03</td>
<td>05-03</td>
</tr>
<tr>
<td>4 Other biomass</td>
<td>01-04</td>
<td>02-04</td>
<td>03-04</td>
<td>04-04</td>
<td>05-04</td>
</tr>
</tbody>
</table>